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Abstract— The excitation and vibration triggered by the long-
term operation of railway vehicles inevitably result in defective
states of catenary support devices. With the massive construction
of high-speed electrified railways, automatic defect detection of
diverse and plentiful fasteners on the catenary support device
is of great significance for operation safety and cost reduction.
Nowadays, the catenary support devices are periodically captured
by the cameras mounted on the inspection vehicles during the
night, but the inspection still mostly relies on human visual
interpretation. To reduce the human involvement, this paper
proposes a novel vision-based method that applies the deep
convolutional neural networks (DCNNs) in the defect detection of
the fasteners. Our system cascades three DCNN-based detection
stages in a coarse-to-fine manner, including two detectors to
sequentially localize the cantilever joints and their fasteners and a
classifier to diagnose the fasteners’ defects. Extensive experiments
and comparisons of the defect detection of catenary support
devices along the Wuhan–Guangzhou high-speed railway line
indicate that the system can achieve a high detection rate with
good adaptation and robustness in complex environments.

Index Terms— Automatic defect detection, catenary support
device, deep convolutional neural network (DCNN), fastener,
high-speed railway.

I. INTRODUCTION

IN THE electrified railway industry, the pantograph–
catenary system plays an important role in transmitting

power from the traction network to vehicles. Catenary sup-
port device (see Fig. 1) is utilized to maintain the height
and stagger of the conductor line, namely, the contact wire.
However, sophisticated mechanical and electrical interactions
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exist between the pantograph and catenary, which inevitably
cause a high defect rate of the pantograph–catenary system and
strongly influence the operation safety [1]. Particularly, due to
the vibration and excitation in long-term operation, fasteners
serving as the connection of the cantilevers on the catenary
support devices may loosen, break or are even missing.

As shown in Fig. 1(a), on the catenary support devices,
the four joints (i.e., the double tube joint, clevis and two
diagonal tubes) are installed to concatenate the horizontal
cantilever, the oblique cantilever, the cantilever arm, and the
registration arm. According to the China Railway Standard [2],
the cantilever joints are fixed by the six different fasteners
(i.e., two screws, puller bolt, α-pin, β-pin, and nut), as shown
in Fig. 1(b).

Noncontact detection is widely adopted with the great
advances in imaging technology [3]. The railway personnel
manually detect the defects by reading a large volume of data
from captured images offline. Due to the installation structure,
in the shooting angle, defects including the missing and the
latent missing of screw A, the puller bolt and α-pin, β-pin,
and missing of the big nuts and the top-view screws can be
detected.

However, with the massive construction of high-speed rail-
ways, the total mileage of China’s electrified railway is over
74 000 km. More than 1.03 billion catenary support compo-
nents must be manually detected. Personnel can easily get
vision fatigue and correspondingly miss some defects. Manual
detection is performed infrequently, so defects may not be
detected in time. Therefore, it is necessary to develop an
automatic defect recognition method based on the catenary
support device images.

For the power supply system pantograph–catenary, some
intelligent detection experiments have been accomplished,
such as catenary geometry parameter measurement [4], sur-
face wear diagnosis of the pantograph and contact wire [5],
and insulator defects diagnosis [6], by image processing and
machine learning. To realize the automatic defect detection of
fasteners on the catenary support devices, this paper refers
to the pioneering works on railroad track detection. For
surface defects of rail heads, Li and Ren [7] designed a
visual detection system to capture the railroad images and
extract the discrete defects based on a projection profile.
In addition, researchers have proposed some methods for
detecting railroad fasteners. Feng et al. [8] developed an
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Fig. 1. Structure of the catenary support device. (a) Structure overview.
(b) Installation structure of the cantilever joints. Red, yellow, green, blue,
orange, and purple boxes indicate the positions of the nut, screw B, α pin,
puller bolt, screw A, and β pin.

automatic defect detection method using a probabilistic
topic model. Marino et al. [9] used a multilayer percep-
tion neural classifier to detect missing hexagonal bolts.
Aytekin et al. [10] achieved real-time railway fastener inspec-
tion using a high-speed laser range finder camera and pixel
and histogram similarity analysis. As deep convolutional
neural network (DCNN) [11] prevails in object recognition,
Gibert et al. [12] applied DCNN in railroad track detection.
This multitask learning system combined a ten-class track
material classification detector (e.g., wood, concrete, and
metal fasteners) with a support vector machine (SVM)-based
detector for fastener defects via a fully convolutional neural
network and achieved a state-of-the-art result compared to
shallow learning. Big data technologies include not only the
image processing but also time delay prediction [13], [14] and
condition-based maintenance [15], which make the machine
learning technologies promising in the railway system.

Automatic defect detection of fasteners on the catenary
support device has not been achieved, to the best knowledge

Fig. 2. Sketch map of the catenary support device image acquisition.

of the authors. The railway track fasteners are usually orderly
arranged and firmly fixed on the rail. However, the railway
catenary support devices are not uniform. The cantilevers are
connected to the masts by hinges, which rotate the support
devices into multiple shapes and angles. Due to the large scale
and complexity of captured images, the segmentation method
of fasteners via the rail material classification [16] cannot be
used in the case of catenary support devices. Accordingly,
a new DCNN-based model is proposed to identify the com-
ponents in the captured hard-drawn (HD) images, and then
judge their states. The system is based on the following pioneer
work.

A. Object Detection

Recently, various object detection algorithms based on
DCNN have become ubiquitous and achieved good results
in the vision benchmark [17]. Based on region proposal,
Girshick et al. [18] and Girshick [19] proposed a region
convolutional neural network (R-CNN) and Fast R-CNN.
Faster R-CNN unifies the region proposal generation and
the object classification network into an end-to-end frame-
work [20]. Based on regression, Redmon et al. [21] developed
a fast single-shot detection method named you only look once
(YOLO). In the Pascal VOC data set [17], YOLO can process
45 frames/s without sacrificing accuracy. Liu et al. [22]
designed a single-shot multibox detector (SSD) that produces
the default boxes for object detection, which offers a speedup
compared to the region proposal generation in Faster R-CNN.
The DCNN architectures adopt feature learning instead of
the traditional hand-crafted feature extraction [23] to improve
robustness.

B. Object Classification

For image classification, Krizhevsky et al. [24] designed
AlexNet to classify 1.2 million ILSVRC images that belong
to 1000 classes. Szegedy et al. [25] developed a 22-layer
deep network named GoogLeNet that achieved state-of-the-art
results in 2014. Training strategies such as dropout and weight
decay play important roles in preventing overfitting.

C. Cascaded DCNN

Cascaded DCNN has been proposed in scene text seg-
mentation [26], face detection, and finger detection [27] to
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Fig. 3. Pipeline of the detection system that includes a three-stage cascaded DCNN.

improve efficiency in a greedy manner. Particularly in face
detection and the alignment field, cascaded DCNN is widely
used. In [28], the DCNNs are cascaded to detect the facial
points in the input face images. Zhang et al. [29] built a three-
stage DCNN to detect the faces and facial points successively.

It can be seen in Fig. 1 that the number and class of the
fasteners are fixed in the cantilever joints. In analogy to face
detection, the cascade structure can be adopted in our task to
detect the cantilever joints and the fasteners, and classify the
states of fasteners from coarse to fine.

This paper is organized as follows. The overview of the
defect detection system is given in Section II. The cascaded
DCNNs are theoretically described and selected for the local-
ization of the cantilever joints and their fasteners and the
recognition of the defective fasteners in Section III. Section IV
presents the adopted data set of catenary support device
images and analyzes the advantages of the detection method by
several experiments and comparisons. Section V draws some
conclusions and outlines further improvements.

II. SYSTEM OVERVIEW

The catenary support device is captured by the roof-mounted
cameras on the running vehicle (see Fig. 2). To avoid the
interference of background buildings, the images are obtained
during night work. The cameras continuously photograph the
catenary support devices in global and local views from both
the front and reverse sides. The size of the catenary support
device images is 6600×4400 pixels. The location information
such as the number and mileage mark of the captured catenary
support device are recorded in the vehicle database. The image
processing consists of three major stages in a coarse-to-fine
manner, component extraction, fastener extraction, and the
fastener state classification. Fig. 3 describes the pipeline of
the detection module. Overviews of the three stages are as
follows.

A. Joint Localization

The goal of the first DCNN is to localize and extract the
three-class cantilever joints in the captured catenary support
device images. From different shooting angles, the object
joints have multiple scales. To localize the joints in the
captured HD images, SSD framework that performs well in
both speed and accuracy is introduced. The input 6600×4400
pixels HD images are first resized to 660×440 pixels in order
to alleviate the memory footprint of the model.

Fig. 4. Default box production of the SSD framework. (a) Input with ground
truth boxes. (b) 11 × 7 feature map.

B. Fastener Localization

The output of Stage 1, namely, the extracted joints, is trans-
mitted to Stage 2. In the extracted cantilever joints images,
fasteners are relatively easy to distinguish since they cover a
large area of the images and are usually not overlapped. Thus,
a fast localization architecture based on the YOLO framework
is cascaded in Stage 2.

C. Fastener State Classification and Defect Recognition

The extracted fasteners are classified into normal, missing,
and latent missing states based on the likelihood via a third
DCNN. Fasteners are of small sizes, and hence, a lightweight
DCNN is built to recognize defects in the case of computation
burden in Stage 3.

To be noted, since this paper focuses on the image process-
ing of the captured catenary support device images, the details
of the image acquisition steps will not be mentioned. In addi-
tion, the image processing-based detection is operated offline.

III. DETECTION MODULE

A. Localization of the Cantilever Joints Using SSD

The core idea of the SSD framework [22] is to produce a
collection of default bounding boxes and predict the object
class from the default boxes. As shown in Fig. 4, the default
boxes are produced from the feature maps in different con-
volutional layers with different aspect ratios and scales. For a
default box in the m × n feature map, the confidences of five-
class object including the background categories and the four
indicators (x, y, w, h) that specify the regression box’s coor-
dinates are calculated. Each cell in a feature map can produce
four default boxes by changing the ratio of the default box’s
length to width in the range of {(1/2), 2}. Thus, the output of
a convolutional layer is a tensor of m × n × (4 + 5) × 4.

In the original SSD architecture, based on VGG-16 net-
work [30], conv4_3, conv6, conv8_2, conv9_2, conv10_2,
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Fig. 5. DCNN architectures of SSD framework. (a) SSD architectures in [22]. (b) Modified architectures. The main optimization of the two SSD architectures
is different configurations for the detection layers.

and conv11_2 are selected as the output layers. Accordingly,
the default boxes are produced on the multiscale feature maps
in sizes of 38 × 38, 19 × 19, 10 × 10, 5 × 5, and 3 × 3. Since
the input images of Stage 1 consist of many small objects,
the lower conv3_3 is added to collect more low-level cues for
detection (see Fig. 5). The size of input images is zoomed-in
view to 660×440 pixels. Thus, the modified SSD architecture
includes the output layers conv3_3, conv4_3, conv7, conv6_2,
conv7_2, and conv8_2 with feature maps at sizes of 165×110,
83 × 55, 42 × 28, 21 × 14, and 11 × 7.

1) Training Procedure: For object localization problems,
training data are comprised of the images and the ground
truth boxes of each object. The key of the training process in
SSD framework is to match the ground truth boxes to a series
of fixed-size default boxes. The default boxes that overlaps
the ground truth for more than 50% or the best overlapped
default box are determined as the positives. A hard negative
mining strategy picks the nonmatched default boxes with high
confidence as the negative training samples to balance the ratio
of the positives to negatives in 1:3.

The object localization model is trained by minimizing a
multitask loss function (see Fig. 6) that sums the localization

Fig. 6. Multitask loss of SSD.

loss and the confidence loss. The localization loss is a smooth
L1 loss between the predicted box and the ground truth. The
classification loss is a softmax class loss over the multiple
classification confidences.

To enhance the robustness of the proposed model, data
augmentation, including random expansion, random crop, and
horizontal flip, is introduced to increase the training samples.

B. Localization of the Fasteners Using YOLO

As shown in Fig. 7, the core idea of the YOLO frame-
work [21] is to predict multiclass bounding box candidates
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Fig. 7. YOLO framework.

directly from the grids in the full input images. The combi-
nation of the class probabilities and bounding box confidence
provides the resulting detection.

In Stage 2, the input images are divided into
7 × 7 grids. In the shooting angle, the nut and α-pin
captured in front and reverse views are considered as different
classes. Thus, each grid predicts classification probabilities
for eight-class fasteners and two candidate bounding boxes
with the confidence score. Each bounding box contains five
position indicators, including the box coordinates (x, y, w, h)
and the position confidence. Overall, the net output is a tensor
of 7 × 7 × (2 × 5 + 8).

Inspired by the GoogLeNet [25], original YOLO network
has 24 convolutional layers followed by two fully connected
layers. Since the task in Stage 2 is relatively simple, a light
YOLO architecture with eight convolutional layers and two
fully connected layers is introduced in Stage 2, as shown
in Fig. 8.

1) Training Procedure: The sizes of the joints are in the
range of 300 × 300–600 × 600 pixels. To make good use of
computational resources and to maintain the precise informa-
tion of joints, the output of Stage 1 is resized to 448 × 448
pixels.

The training loss of Stage 2 is based on sum-squared error
and comprised of five parts, i.e., the regression-weighted sum-
squared error of each cell’s bounding box center x and y,
the square root of each bounding box width and height,
the sum-squared error of the saliency probability of whether
objects exist in a bounding box, the classification-weighted
sum-squared error of the saliency probability of whether
an object does not exist in a bounding box, and the class
probabilities of each cell. Dropout and random crops are
introduced to reduce overfitting.

C. Defect Judgment of the Fasteners

The fasteners include three basic states: the normal working,
missing, and latent missing states. The goal of Stage 3 is
to categorize the extracted fasteners into three classes and
correspondingly recognize the defect states. Fig. 9 lists the
states for each type of fastener. For the nut and α-pin,
a defect cannot be judged on the reverse side images. Hence,
the extracted nut and α-pin in reverse side will not be input
into Stage 3.

For some of the missing states, the fasteners cannot be local-
ized in Stage 2. Since the number and class of the fasteners in
these joints are fixed, the defect can be judged by the absence
of the fasteners in Stage 2, as shown in Fig. 10. In addition,
an image classification network is built to categorize the
installation states. The architecture of the state classification
network is summarized in Fig. 11. It contains a total of four
convolutional layers and two fully connected layers between
the input and output layer.

To unify the training process, the output layer is connected
to a 16-way softmax that produces the probabilities for 16-
class fastener states. This network will provide a probability
for the states that the fasteners belong to and judge the states
by a threshold.

1) Training Procedure: The fasteners are tiny objects, with
sizes of approximately 70 × 70 pixels. Due to the limited
samples of defect images, data augmentation is introduced. For
the sake of balancing the training, the number of the normal
input samples is limited to balance the defective samples.

In Stage 3, the training loss is no longer multitask. Since it is
a multilabel classification problem, softmax class loss is also
used to compute the confidence of the classification. Mean-
while, dropout is also adopted here by 50% at conv_5 layer
to reduce overfitting.

IV. EXPERIMENT AND RESULTS

The above analysis of the proposed cascaded detection
system provides the feasibility to automatically localize the
cantilever joints of the catenary support device and recognize
the defects of their fasteners.

A. Data Set

The data set used in the experiments consists of the cate-
nary support device images captured from an approximately
100-km line along the Ju-Yue section of the Wuhan–
Guangzhou high-speed railway, in which 2000 catenary sup-
port devices and 40 000 fasteners exist. The images are
collected by the XLN4C-01 imaging inspection vehicle (see
Fig. 12) during the night. The data set contains the catenary
support devices in various challenging environments, such as
tunnels, turnouts, and viaducts, to evaluate the robustness of
the proposed method.

To build the training set for Stage 1, we manually draw
the bounding boxes and assign the labels of approximately
8563 catenary support device images, in which 6371 images
are in the training set and 2192 images are in the validation
set.

The training loss guides the training process and the accu-
racy indicates the reliability of the trained model. To avoid
overfitting, the validation set is built to choose the trained
model. The accuracy of the validation set is calculated in a
defined interval, and the model with the highest accuracy is
chosen as the testing model.

A testing data set is generated to evaluate the proposed
method. To prove the adaptability of the model, the testing data
set consists of the images collected from a different section
Heng-Zhu, 67 km in total. In total, the testing data set consists
of 4487 images.
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Fig. 8. DCNN architecture of YOLO framework. (a) Original DCNN architecture in [21] is based on the GoogleNet, while (b) architecture in this paper is
simplified to a light network.

Fig. 9. Categories for the defects of fasteners in Stage 3. The loosening of
the screws and puller bolts and the open lack of the pins are defined as latent
missing.

B. Training Process

The data set is employed to validate the proposed system.
The experimental environment is described as follows: Deep

Fig. 10. Detection of the missing puller bolt by YOLO in Stage 2.

learning open source framework Caffe [31], Ubuntu 14.04,
32-GB RAM, CPU clocked at 3.2 Hz, and GTX 1080 graph-
ical processing unit (GPU) with 8-GB memory.

The joints on the 6371 images in the training set are
manually labeled. Since the task of Stage 2 is much sim-
pler, Stage 2 can be considered as a semisupervised training
(see Fig. 13), including the following four steps.

Step 1: We manually label only 1500 cantilever joints
images at first. The 1500 images are used to train a YOLO
network.
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Fig. 11. DCNN architecture of the fastener state classification.

Fig. 12. XLN4C-01 inspection vehicle.

Fig. 13. Details of the semisupervised training of Stage 2.

Step 2: The trained YOLO network is used to detect the
fasteners on 2000 unlabeled cantilever joint training samples.

Step 3: The detection results of the 2000 unlabeled images
are added in the training set of Stage 2. The training set of
Stage 2 is expanded. To ensure the reliability, the results with
the confidence less than 0.8 will not be included.

Step 4: A new YOLO network is trained with the expanded
training set.

Steps 2, 3, and 4 are alternatively implemented. Training
process is ended when all of the unlabeled cantilever joint
images are detected and added in the training set.

Due to the limitations of the defect fastener images,
the training data set in Stage 3 contains 35 images for each
defect state and normal states of six-class fasteners, for a
total of 560 images for 16 types of states. With the data
augmentation strategy, the training data sets are expanded.

Each of the three DCNN stages is end-to-end trained using
backpropagation and stochastic gradient descent solver with
momentum (0.9) and weight decay of 5 × 10−4. Due to the
limitation of GPU memory and training samples, the training
batch sizes of the three stages are set to 16, 8, and 1.

The learning rate is used to control the rate of gradient descent
of the training loss. In Stage 1, the learning rate is set to
0.0001 initially, and then tuned to 0.001 after 4000 iterations.
Stage 2 and Stage 3 employ fixed learning rates of 0.0005
and 0.01.

C. Experiment Results and Discussion

The testing images are collected from a different route but
are tested under the same computation environment as training.
The proposed method displays good results in localizing the
joints and fasteners, and recognizing their defects in the three
stages. Fig. 14 shows several visualized detection examples
and results.

To verify the effectiveness of the proposed method, three
sets of experiments are conducted to evaluate the method
in terms of the average precision and the processing time
costs (frames/s), including the effects of the modified DCNN
structures, the comparison with other underlying DCNN archi-
tectures and shallow learning algorithms and the effectiveness
of the three-stage cascade architecture.

The true positive (TP), false negative, and false positive (FP)
are counted to compute the following statistical indicators
precision and recall. The mean average precision (mAP) is
computed according to the relationship P(R) of precision (P)
and recall (R)

Precision = T P

TP + FP
× 100% (1)

Recall = TP

TP + F N
× 100% (2)

mAP =
∫ 1

0
P(R)d R. (3)

The evaluation of the effects of the modified DCNN archi-
tectures is designed to show that the DCNN architecture is
correctly selected and modified for each stage. In order to
give a fair evaluation, the experiment of Stage 2 leverages
the human verified outputs of Stage 1; thus, the FP outputs
will be ignored. Moreover, some of the joints are severely
occluded (see Fig. 15), and missed detections of these com-
ponents will not be counted when calculating precision.

1) Effects of the Modified DCNN Architectures:
a) Accuracy of using multiple output layers in Stage 1:

The modified architecture for SSD framework is compared
with the original SSD architecture to analyze the effects of
using multiple output convolutional layers. Table I shows
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Fig. 14. Four examples of defect detection. (a) Captured catenary support device images. (b) Cantilever joints localization using the SSD framework.
(c) Crop and resize of the cantilever joints. (d) Fasteners localization using the YOLO framework. (e) Fastener state classification. The four examples contain
the fasteners all in the normal states.

the detection results of different configurations of the output
layers. The performance is increased when the outputs are
predicted from multiple layers. The comparison of the pro-
posed model and the original model shows that accuracy is
improved when using the low-level convolutional layers. This
is not surprising since the proposed system consists of many
small objects. Pruning conv8_2 at output will also improve the
accuracy because the feature maps in this layer contain very
coarse information.

The proposed architecture is based on VGG-16 and is also
compared with that based on Resnet-50 in the experiments.

Since 2015, the residual network has been very successful
in the ImageNet classification. The results are summarized
in Table II. For each of the joints, the detection result is of
low accuracy on the validation set and shows it is overfitting.
This is not surprising since the number of the training data
cannot satisfy training a Resnet-50 and since the objects are
not as complex as the ImageNet.

b) Running efficiency of the light DCNN architecture
in Stage 2: To evaluate the running efficiency of the light
network, we compare it with the original YOLO architec-
ture under the same environment and the results are listed
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TABLE I

EFFECTS OF DIFFERENT OUTPUT LAYER OPTIONS

TABLE II

BASIC NETWORK COMPARISON OF STAGE 1

TABLE III

COMPARISON TO THE ORIGINAL YOLO

in Table III. It can be seen that both of the DCNN architectures
have good performance, but the proposed light YOLO offers
a speedup. It should be noted that experiments are processed
using GTX1080. The improvement of GPU will accelerate the
model by a large margin.

c) Comparison of the multiple DCNN architecture in
Stage 3: The proposed DCNN architecture in Stage 3 is
compared with a light architecture that refers to a vehicle logo
recognition system [33] and a large architecture AlexNet [24].
The light network contains two convolutional layers, two
pooling layers, and a fully connected layer to classify 11-class
logos. AlexNet contains five convolutional layers, three max-
pooling layers, and three fully connected layers to classify
1000-class objects in the ImageNet competition. In the com-
parative experiment, the three DCNNs are trained and tested
using the same data set.

Confusion matrices are used to evaluate the classification
accuracy. It can be seen from Fig. 16 that the proposed system
and AlexNet perform better on accuracy than that of the light
network. However, according to Table IV, the large network
decreases the speed of the task compared to the proposed
network.

According to the confusion matrices, for the latent miss-
ing states, the proposed classifier shows a relatively higher

Fig. 15. Severe occlusions (a) joint and (b) upper diagonal tube behind
support.

TABLE IV

COMPARISON OF THE THREE SCALE CLASSIFICATION NETWORK

accuracy on the puller bolts and two screws. However, some of
the fasteners in normal states are considered as latent missing
[see Fig. 14(e)]. The latent missing of fasteners sometimes
appears as the normal state and it is a close call. Since the most
important task is to prevent the absence of defect recognition,
a small amount of the false prediction of the normal as defects
is allowed to some extent.

2) Comparison With Other Underlying DCNN Architectures
and Shallow Learning Algorithms: The proposed localization
and classification networks are compared with the following
learning algorithms considering accuracy and speed.

a) Localization comparison:

1) SSD Architecture: SSD framework has been explained
in Section III-A.

2) YOLO Architecture: YOLO framework has been
explained in Section III-B.

3) Faster R-CNN: Based on Zeiler and Fergus model net,
the conv_5 feature is input into a region proposal net-
work to generate ∼2K region proposals. Then, the region
proposals are reflected to the conv_5 and are classified
by two fully connected layers and a softmax. Finally,
the predicted bounding boxes are slightly adjusted to fit
the objects.

4) HOG Features With AdaBoost Classifiers: Histogram
of gradient (HOG) [23] is a local hand-crafted feature
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Fig. 16. Confusion matrices of fastener state classification. (a)–(c) Light, medium, and large network, respectively. The rows of the confusion matrices
respond to the correct class while the columns display the predicted classes. Latent missing is simplified as “latent.”

descriptor that is invariant to light and rotation. Object
detection is achieved by sliding windows on the input
images. For each window, the HOG feature is calculated,
and then classified by a series of cascaded two-category
classifiers. The classifier is trained by an AdaBoost
algorithm [34] that highly weights the wrong prediction
in the previous classifier by an adaptive boost training
mechanism.

5) Deformable Part Models: Deformable part
model (DPM) [35] is also based on HOG features
but it calculates multiscale pyramid features of the
input images. Objects are modeled by the part and
root filters in coarse-to-fine resolution. A latent SVM
is used to train the part models and are combined
with a margin-sensitive approach for data mining hard
negatives.

A precision–recall (PR) curve is drawn to visualize the
performance for different detection algorithms. It can be seen
from Fig. 17 that the SSD architecture and Faster R-CNN
perform better than YOLO and DPM in terms of accuracy.

The statistical results are summarized in Table V. In particu-
lar, the SSD and Faster R-CNN have relatively higher accuracy
in Stage 1 than that of the others. However, the SSD network
runs 3× faster than the Faster R-CNN.

Since the proposed system has a great capacity of HD
images to process, the SSD framework should be accepted as
the extractor of the cantilever joints. In Stage 2, the proposed
deep learning algorithms (including SSD, YOLO, and Faster
R-CNN), and even DPM, have good performances in accuracy

Fig. 17. PR curves for the localization results. (a) and (b) Result of the
clevis and the upper diagonal tube in Stage 1. (c) and (d) Result of the nut
and the α-pin in Stage 2.

since Stage 2 is not as complex as Stage 1. However, the pro-
posed fast YOLO network has a huge superiority in detection
speed and training time consumption.

b) Defect recognition comparison: In addition to the
proposed methods of object localization, DCNN in Stage 3
is also compared with several image classification methods.

1) The Proposed DCNN Architecture: The proposed archi-
tecture has been explained in Section III-C.
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TABLE V

COMPARISON OF THE JOINTS AND FASTENERS EXTRACTION RESULTS

Fig. 18. Effect analysis of the cascade DCNN structure. (a) Performance comparison of the two-stage and unified DCNN for detecting the fasteners.
(b) Performance comparison of the two-stage and the unified DCNN in the recognition of defects on the joint images.

TABLE VI

COMPARISON OF THE DEFECTS RECOGNITION RESULTS

2) HOG Features With SVM: The input images are calcu-
lated of HOG features and classified by the two-category
classifier SVM [36].

3) SIFT Features With Template Matching: Scale-invariant
feature transform (SIFT) [37] is a local feature descriptor
that calculates the interest points in multiscale space and
collects the key interest points of the two images to be
matched.

The comparative results are summarized in Table VI. Appar-
ently, the proposed DCNN-based method outperforms the
shallow learning in both accuracy and speed.

3) Effectiveness of the Three-Stage Cascade Architecture:
To investigate the impact of the three-stage cascade archi-
tecture, two comparative experiments are conducted by the
combination of Stages 1 and 2, and Stages 2 and 3.

Stage 1 and Stage 2 are combined into a single DCNN
that can directly localize the tiny fasteners in the captured HD
images. The proposed SSD framework in Stage 1 is used as the
single DCNN in the comparative experiment. Fig. 18(a) lists

the result of localizing the six-class fasteners. Unfortunately,
the single DCNN shows very poor performance in terms of
accuracy. This is not surprising as it is difficult to distinguish
the 20 × 20 pixels objects in the 6600 × 4400 pixels raw
input images. Even conv3_3’s receptive field is still too large
to predict the tiny fasteners. The low-level layers such as
conv2_3 have less semantic information about the objects,
which does not help in detecting small objects. Due to the
limited computation resource, the rescaling of the input also
eliminates the precise information of tiny fasteners.

Owing to the disadvantage of the DCNN architecture caused
by the large receptive fields, one of the best shallow learning
DPM replaces the single DCNN to be compared with the two-
stage DCNN. The shallow learning algorithm uses the sliding
windows on the raw input images. The size of the sliding
windows can be adjusted to fit the objects. However, DPM also
shows a low performance because the hand-crafted feature is
not as robust as the feature learning, especially for the fasteners
with simple structures. Overall, it is better to localize the joints
and the fasteners separately in two stages.

Stage 2 and Stage 3 are also combined to output the
states of the fasteners in the extracted joints. The defective
states of fasteners are labeled in the joint images to train a
DCNN architecture based on the YOLO framework in Stage 2.
To balance the training, 35 images are selected for each type of
fastener in all states. However, the absence of adequate defect
samples and the minor discrepancy between the normal and
defective states can result in poor accuracy. Fig. 18(b) lists the
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mAP for the three states and shows that the normal and latent
missing states are easily missed using the single network.

Overall, the cascaded three-stage DCNN is necessary to
accurately recognize the defect states of tiny fasteners from
the HD catenary support devices.

V. CONCLUSION

This paper presents a method to detect the defective fasten-
ers of the cantilever joints on the catenary support devices. The
proposed three-stage architecture can automatically localize
the three cantilever joints and the six fasteners and judge
the missing and latent missing states of the fasteners in the
captured images. All stages are accomplished by DCNNs,
which benefit the detection due to the superiority in robustness
and adaptability. Overall, the proposed approach shows a
promising application and accuracy in the fasteners’ defect
recognition. The reduced time consumption makes it feasible
to periodically detect the enormous quantity of the catenary
fasteners in a large railway network. Nevertheless, the results
suggest some further improvements.

1) The catenary support device has many more items than
the defective fasteners to detect, such as cracks on the
joints, the loosening of bracing wires, and the flashover
of insulators.

2) The latent missing of nut and screw B cannot be judged
due to the blind angle of cameras. Thus, detection based
on RGB-D data can be attempted to build a DCNN-
based tri-dimensional model to address it.

ACKNOWLEDGMENT

The authors would like to thank the Guangzhou Railway
Group for providing the experiment images. They would also
like to thank the anonymous reviewers for their valuable
comments.

REFERENCES

[1] S. Bruni et al., “The results of the pantograph–catenary interaction
benchmark,” Veh. Syst. Dyn., Int. J. Veh. Mech. Mobility, vol. 53, no. 3,
pp. 412–435, Nov. 2014.

[2] Fittings for Overhead Contact System in Electrification Railway,
Standard TB/T 2075.1, China Railway Industrial Standard, 2010.

[3] Z. Liu, W. Liu, and Z. Han, “A high-precision detection approach
for catenary geometry parameters of electrical railway,” IEEE Trans.
Instrum. Meas., vol. 66, no. 7, pp. 1798–1808, Jul. 2017, doi: 10.1109/
TIM.2017.2666358.

[4] C. J. Cho and H. Ko, “Video-based dynamic stagger measurement of
railway overhead power lines using rotation-invariant feature matching,”
IEEE Trans. Intell. Transp. Syst., vol. 16, no. 3, pp. 1294–1304,
Jun. 2015.

[5] E. Karakose, M. T. Gencoglu, M. Karakose, I. Aydin, and E. Akin,
“A new experimental approach using image processing-based track-
ing for an efficient fault diagnosis in pantograph–catenary systems,”
IEEE Trans. Ind. Informat., vol. 13, no. 2, pp. 635–643, Apr. 2016,
doi: 10.1109/TII.2016.2628042.

[6] Y. Han, Z. Liu, D.-J. Lee, G. Zhang, and M. Deng, “High-speed
railway rod-insulator detection using segment clustering and deformable
part models,” in Proc. IEEE Int. Conf. Image Process., Sep. 2016,
pp. 3852–3856.

[7] Q. Li and S. Ren, “A real-time visual inspection system for discrete
surface defects of rail heads,” IEEE Trans. Instrum. Meas., vol. 61,
no. 8, pp. 2189–2199, Aug. 2012.

[8] H. Feng, Z. Jiang, F. Xie, P. Yang, J. Shi, and L. Chen, “Automatic
fastener classification and defect detection in vision-based railway
inspection systems,” IEEE Trans. Instrum. Meas., vol. 63, no. 4,
pp. 877–888, Apr. 2014.

[9] F. Marino, A. Distante, P. L. Mazzeo, and E. Stella, “A real-time
visual inspection system for railway maintenance: Automatic hexagonal-
headed bolts detection,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.,
vol. 37, no. 3, pp. 418–428, May 2007.

[10] Ç. Aytekin, Y. Rezaeitabar, S. Dogru, and İ. Ulusoy, “Railway fas-
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