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Abstract— Nowadays, rolling stock can be equipped with
high-frequency vibration sensors to continuously monitor rail
infrastructures and detect defects. These moving sensors measure
at high speeds and sampling frequencies, generating a massive
amount of data that covers each track position with very short
signal durations. These data contain a variety of dynamic and
transient responses that vary significantly along the track and
are affected by noise. This leads to a large amount of unlabeled
and noisy data, complicating the extraction of dynamic responses
for effective anomaly detection. To address these challenges,
this paper proposes an unsupervised representation learning
methodology to automatically capture and extract characteristic
features of dynamic responses that reflect the conditions of
rail infrastructures. The unsupervised nature allows exploratory
analysis of high-frequency vibration signals when prior knowl-
edge or reference information about infrastructure conditions is
unavailable or very limited. A collaborative optimization process
that synchronizes empirical mode decomposition (EMD) with a
convolutional autoencoder (CAE) is presented. The EMD level
is tuned to remove noise while preserving effective vibration
responses. The CAE is trained using demodulated signals that
are considered normal to generate representations that ensure
reconstruction quality and differentiate between normal and
abnormal conditions. Furthermore, a Gaussian mixture model
is used to showcase the effectiveness of the learned represen-
tations for rail infrastructures. Applied to validated axle box
acceleration data for rail defect detection and train-borne laser
Doppler vibrometer data for rail fastener monitoring, our method
outperforms other variants of autoencoder-based models and
the wavelet-based CAE in accurately identifying the conditions.
It achieves an average improvement of 16% with the axle box
acceleration data and 21% with the laser Doppler vibrometer
data.

Index Terms— Unsupervised learning, axle box acceleration,
laser Doppler vibrometer, autoencoders, empirical mode decom-
position, high-frequency data.
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I. INTRODUCTION

STRUCTURAL health monitoring plays a pivotal role in
ensuring the safety and integrity of rail infrastructures [1].

Through the development of various sensing technologies
and data analytics techniques, defects can be detected timely,
thus allowing corrective and predictive maintenance to pre-
vent catastrophic accidents. The collection and analysis of
data further enable the digitalization of railway transportation
systems. Among various monitoring technologies, vibration-
based monitoring is an effective approach to characterize
a wide range of dynamic behaviors and properties of rail
infrastructures [2], [3], [4], [5], [6].

Vibration-based monitoring can be implemented by dis-
tributing sensors on rail infrastructures and measuring their
vibrations induced by moving train loads, such as in [7]
and [8]. Distributed sensors can record structural vibrations
at different locations over time, thus providing rich data for
parameter estimation and health assessment. Numerous meth-
ods have been developed to analyze such signals, including
signal processing methods [9], [10] and machine learning
methods [11]. However, it is cost-prohibitive to apply dis-
tributed sensors to large-scale transportation systems, such as
railway lines spanning thousands of kilometers.

Vibration-based monitoring of rail infrastructures with sen-
sors on trains in operation is gaining increasing prominence.
In [12], [13], [14], [15], and [16], accelerometers are utilized,
while in [17], [18], and [19], vibrometers are employed to
monitor various components and properties of railway track
structures. In [20] and [21], smartphones are used for evaluat-
ing the quality of railway tracks. These technologies enable the
dynamic behaviors at different locations of an infrastructure
to be measured in a single run, which is highly preferred for
large-scale monitoring. These technologies generally pursue
monitoring under the operational speed and load of the rail
network to avoid disturbance to train traffic and capture
structural response under realistic loading conditions.

Compared to the use of distributed sensors, vibration-based
monitoring with moving sensors poses several challenges for
data analysis and anomaly detection. The first challenge is sig-
nificant variability in dynamic behaviors at different locations,
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Fig. 1. (a) Example of a raw ABA signal containing various rail dynamics:
(b) weld, (c) squat, (d) small defect, and (e) the ABA signals within the green
boxes from (a), and (f) the corresponding wavelet power spectrum.

which is affected by local properties of rail infrastructures
and changing operational conditions of trains. For example,
Fig. 1 depicts a portion of a vibration signal measured by
an axle box accelerometers (ABA). This signal contains rail
dynamics that vary along the track, which are evident by the
vibration patterns of the weld and surface defects, highlighted
as examples in the figure. Additionally, the green boxes in
Fig. 1(e) represent the ABA signals from nearby locations that
exhibit significantly different amplitudes in their frequency
contents, shown in Fig. 1(f). This variability across large-scale
infrastructures complicates the identification of anomalies,
necessitating advanced techniques to isolate them.

The second challenge arises from the need to segment
signals for high-resolution localization of defects. This seg-
mentation process results in short-duration signal fragments.
For instance, when a train travels at a speed of 100 km/h,
it covers a distance of 1 meter in 36 milliseconds. As train
speed increases, the time duration over a specific distance
decreases accordingly. A shorter duration of the signals makes
it more difficult to achieve accurate and reliable defect detec-
tion because less information is available within the segment.
Therefore, a high sampling frequency is necessary to capture
the variations of dynamic behaviors within these signals,
resulting in an increased number of data points within a given
distance. For example, ABA data are collected with a high
sampling frequency of 25.6 kHz in [22], while the sampling
frequency of a train-borne laser Doppler vibrometer (LDV) is

Fig. 2. Example of a raw LDV signal containing severe noise.

102.4 kHz in [17]. This generates large volumes of data with
short durations and high frequencies, requiring effective and
efficient methods to process them.

The third challenge concerns disturbances and noise from
multiple sources, including vehicle vibrations, track irregular-
ities, and measurement noise. Fig. 2 shows an example of
the train-borne LDV signal measured on rail fasteners where
severe noise is observed. The major source is the speckle noise
due to the drastic change of speckle patterns as the laser spot
scans the rough surfaces [23]. The speckle noise deteriorates
the quality and usability of LDV signals. It obscures the
actual vibration patterns of defects and anomalies, making
it difficult to detect accurately. The mitigation of noise and
disturbances is achieved with specialized filtering algorithms
in [18] and [23].

The last challenge involves fuzziness in distinguishing
between different dynamic behaviors. For instance, when deal-
ing with defects at the early stage of their development, their
responses in ABA signals are subtle and slightly different from
those of healthy rails, as seen from the dynamic responses of
the small defect in Fig. 1. These responses may not be apparent
to human inspectors or traditional detection methods. As a
result, many samples fall within the ambiguous boundaries
between normal and abnormal conditions. These samples
complicate the labeling process and yield a substantial amount
of unlabeled data, hindering the use of supervised learning.

Conventionally, the above challenges are addressed by
crafting data analysis methods based on the knowledge and
experience of experts in the physics of targeted structures and
defects, such as [18] and [24]. However, with the increas-
ing volume of data, diversity of objects, and complexity
of features, manual judgment becomes less efficient, robust,
and reliable. Alternatively, the advancement of unsupervised
learning has the potential to fill this gap [25], [26], [27], [28].

Several unsupervised learning approaches have been devel-
oped to analyze vibration data, such as t-distributed stochastic
neighbor embedding (t-SNE) [29], K-means clustering [30],
principal component analysis (PCA) [31], tensor cluster-
ing [32], and one-class support vector machine (OC-SVM)
[33]. Deep learning has gained attention in addressing such
problems in recent years, and various auto-encoder (AE)
variants have been developed for feature learning. In [34], [35],
[36], and [37], convolutional autoencoder (CAE) is exploited
in feature extraction and fault detection based on vibration
signals. In [38], an expectation-maximization algorithm with
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an adversarial autoencoder was used in feature extraction for
rotating machinery fault diagnosis. In [39], an unsupervised
feature learning method for machinery health monitoring
was proposed using a generative adversarial networks model.
In [40], [41], and [42], a method based on sparse filter-
ing, an unsupervised two-layer neural network, was proposed
for fault feature learning from mechanical vibration signals.
In [43], an AR model was used to extract features obtained
from accelerometers installed on the rails during the passage
of traffic loads. Then, an unsupervised methodology using
outlier and clustering analysis was developed to identify wheel
flats. In [44], an unsupervised degradation state evaluation
method based on a deep tensor autoencoder network was
proposed to automatically extract representation and assess the
health conditions of metro wheels. In [45], a second-generation
wavelet deep autoencoder (SWDAE) network was developed
in an unsupervised manner to evaluate the degradation state
of metro wheels.

Table I summarizes the selected unsupervised learning
research focused on vibration-based monitoring in the railway
domain. Given the challenges mentioned above, a very limited
number of unsupervised learning methods have been devel-
oped to handle vibration data from moving sensors. Therefore,
this paper develops an unsupervised learning methodology
to automatically extract features characterizing the dynamic
behaviors of rail infrastructures measured by high-frequency
moving vibration sensors. The methodology employs a col-
laborative optimization process that synchronizes empirical
mode decomposition (EMD) with the parameters of a CAE.
EMD is chosen for its ability to adaptively separate different
frequency characteristics without the need for predefining
each frequency range [13], [46]. EMD offers the possibility
to explore dynamic behaviors over a broad frequency band
while reducing the disturbance of measurement noise. The
CAE is selected for its ability to extract informative fea-
tures from vibration signals to characterize dynamic behaviors
automatically. Furthermore, the CAE’s simple yet effective
structure is well-suited for limited labeled data common in
railway applications. This minimizes the risk of overfitting
while capturing meaningful representations. The latent features
learned from the collaborative process of EMD and CAE
ensure reconstruction quality and distinguish between normal
and abnormal behaviors. This methodology facilitates various
analyses, including dimensionality reduction, classification,
clustering, and supports anomaly detection by identifying devi-
ations from the normal behavior pattern. The key contributions
of this work are summarized as follows:
• An unsupervised representation learning methodology

is proposed to automatically extract features that char-
acterize dynamic behaviors of rail infrastructures from
vibration data that is noisy and short-duration obtained
from high-frequency moving sensors at different loca-
tions.

• A collaborative optimization process between EMD level
and the parameters of CAE is proposed for a generation
of representations that demonstrate reconstruction quality
and can differentiate between rail infrastructures under
normal and abnormal conditions.

• Two field measurements with different targeted compo-
nents, sensor types, and operational conditions are used
to demonstrate the applicability and performance of the
proposed methodology for monitoring rail defects using
an ABA and rail fasteners using a train-borne LDV.

The rest of the paper is as follows. Section II presents
fundamental knowledge of the methodology used. Section III
presents problem formulation and the proposed framework.
In Section IV, the proposed unsupervised representation
learning methodology is elaborated. Section V describes the
real-world applications used to showcase the methodology.
The comparison of the proposed methodology with different
models from the literature and discussions are presented in
Section VI. The paper is concluded in Section VII.

II. FUNDAMENTAL KNOWLEDGE

A. Empirical Mode Decomposition

The EMD has been pioneered by Huang et al. [46] for
adaptively representing nonlinear and non-stationary signals.
For a given signal x(t), EMD decomposes x(t) into a series
of intrinsic mode functions (IMFs), denoted as ci (t), where
i = 1, 2, . . . , I and I is the total number of IMFs, and a
residual ri (t) [47]. The EMD algorithm, referred to as the
sifting process, iteratively extracts IMFs based on the local
maxima and minima of the signal. At the end of the EMD
process, the original signal x(t) can be expressed by a sum of
IMFs and a residual component as [48]:

x(t) =
I∑

i=1

ci (t)+ rI (t). (1)

B. Convolutional Autoencoder

A CAE is a type of autoencoder architecture that combines
convolutional layers with an autoencoder model [34]. It aims
at unsupervised learning of a lower-dimensional representation
from higher-dimensional data. The CAE network comprises
three main parts: encoder, latent representation, and decoder.
The encoder and decoder are designed using convolutional
layers and can have several hidden layers, making a deep CAE.

Given an input signal x(t) and let zl denote the output of the
l th convolutional layer, where l ranges from 1 to L , in which
L is the number of convolutional layers designed in the
encoder. The output of the encoder zL is a latent representation
of the input data x(t), typically with reduced dimensions.
The decoder takes the latent representation zL and aims to
reconstruct the original input x(t). The decoder consists of a
stack of transposed convolutional layers. Let uk denote the
output of the kth transposed convolutional layer, where k
ranges from 1 to the number of transposed convolutional layers
K . The output of the decoder uK = x̃(t) is the reconstructed
version of the input data x(t). Mathematically, the process of
encoding and decoding in a CAE is given as follows:

zl = σ
(
wl ∗ zl−1 + bl

)
, (2)

uk = σ
(
vk ∗ uk−1 + ek

)
, (3)

where ∗ denotes the convolution operation, σ denotes an
activation function, wl and bl are the weights and biases of the
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TABLE I
SUMMARY OF THE SELECTED UNSUPERVISED LEARNING RESEARCH FOCUSED ON VIBRATION-BASED MONITORING IN THE RAILWAY DOMAIN.

NOTE THAT SENSOR TYPE IS DEFINED WITH RESPECT TO THE SPECIFIC COMPONENTS BEING TARGETED

l th convolutional layer, vk and ek are the weights and biases
of the kth transposed convolutional layer.

III. PROBLEM FORMULATION AND THE PROPOSED
FRAMEWORK

Let xa(t) = a(p(t)) denote acceleration signals from ABA
and xv(t) = v(p(t)) denote velocity signals from LDV
obtained from a positioning system at track position p(t) and
at time instance t . For simplicity, we will represent these
signals collectively as x(t) throughout the rest of the paper.

For a vibration signal x(t) obtained from a moving sensor
collected with sampling frequency f Hz and measuring speed
s(t) m/s, this work assumes segmenting the signal x(t) into
a set D of M smaller segments containing β datapoints. The
set D is mathematically expressed as:

D =
{

xm(t)
∣∣∣ t = t(m−1)φ+1, . . . , t(m−1)φ+β ,

}M

m=1
, (4)

where xm(t) denote the mth segment corresponding to the time
instances between t(m−1)φ+1 and t(m−1)φ+β with time duration
ζm = t(m−1)φ+β− t(m−1)φ+1 and φ is the number of datapoints
used as a step size for moving the segment.

The signal segmentation can be done to allow overlapping,
meaning φ < β. A local optimization approach can also be
considered to identify the appropriate time duration suitable
for the data analysis task. This is due to a need to balance
between accommodating the characteristic response length and
capturing sufficient detail for the detection and localization of
the targeted rail infrastructure. Given a targeted rail infras-
tructure r , the process begins by identifying the types of

defects under consideration, in which a combination of defect
types is possible for the analysis. Using field data and expert
knowledge, we analyze the dynamic responses associated
with each defect type. The response durations, which vary
significantly depending on the type of defect, are estimated
to provide initial guidelines for optimization. The signal is
then segmented to cover the range of dynamic responses for
the identified defects. Let tbr and ter be the starting and
ending time of its dynamic response, and τr = ter − tbr be
the duration of this response. Additionally, let tαr represent
an additional time duration used to capture extra responses.
Then, the initial time duration is defined as ζm = τr + tαr .
An iterative optimization process is then performed to refine
ζm , identifying the duration that best captures the relevant
characteristics of the defects. This evaluation determines the
segment length that yields local optimal performance for
detecting or analyzing defects, which is subsequently selected
for further analysis. The appropriate segment length can be
determined by minimizing the datapoints β contained within
each segment while finding an optimal tαr that ensures the
segments cover the critical dynamic response duration τr .
This optimization process can be formalized into the objective
function and constraints as follows.

min
β,tαr

ζm(β) (5)

subject to, ∀r ∈ Z+,

2tαr + τr ≤ ζm(β),∀m = 1, . . . , M, (6)[
tbr − tαr , ter + tαr

]
⊆
[
t(m−1)φ+1, t(m−1)φ+β

]
, ∃m. (7)
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Fig. 3. Framework for unsupervised representation learning.

Unsupervised representation learning aims at autonomously
extracting useful features that capture key characteristics of
data without labels. This technique generally involves a recon-
struction process relying on learning representations from data
with normal behaviors/conditions to capture their common
and essential features. In alignment with this principle, our
paper introduces a hard threshold for identifying some normal
samples from the unlabeled data. This hard threshold allows
the reconstruction process to function without requiring a
complete and pure dataset of normal data. Instead, it allows
part of normal data to be utilized and even some ambiguous
abnormalities to be included. This approach eliminates the
need for extensive collections of purely normal data. The
flexibility in data acquisition aligns with the unsupervised
learning paradigm, which does not rely on prior input from
experts or extensive fieldwork.

For a given hard threshold λ, this paper considers a set
N ⊆ D containing samples most likely with normal conditions
for representation learning. The set N is obtained as:

N =
{

xn(t) ∈ D
∣∣∣ C
(
xn(t), λ

)}N

n=1
, N < M, (8)

where C is a specified condition for a selection of normal
samples.

As vibration signals from moving sensors contain various
disturbances and noise, this work employs EMD to decompose
xn(t) ∈ N into several IMFs. Each IMF represents an
oscillatory mode embedded within the signal, with different
levels of IMFs capturing different high-frequency components
and noise inherent in the signal. The residual signal represents
the part of the signal that cannot be effectively decomposed
into the IMFs of the respective level. It typically consists
of low-frequency components and trends of the signal. This
paper considers the residual signal at various levels ri (t),
i = 1, 2, . . . , I, to extract representations inherent in the
normal data. This approach resembles multi-level denoising,
as the noise components are removed at various levels. In this
context, these residual signals are referred to as demodulated
signals as they are the signals from which the cumulative sum
of IMFs up to level i has been extracted from the original
signal. Let N̂i be a set of demodulated signals at level i ,
then the demodulated signal x̂n,i (t) at level i within this set

is expressed as:

x̂n,i (t) = xn(t)−
i∑

j=1

c j (t). (9)

The EMD method allows for a separation of noise and extrac-
tion of meaningful representations from the vibration signals.
Therefore, this paper considers learning a representation of N
through the demodulated signals in N̂ .

For the reconstruction process at each EMD level i ,
an autoencoder model Fi = Di ◦ Ei is developed such that
the encoder Ei encodes the demodulated signals x̂n,i (t) ∈ N̂i
into a lower-dimensional latent representation space zn,i (t).
Then, the decoder Di decodes it back to the original space,
yielding the reconstructed data x̃n,i (t) from its representation.
The reconstruction process is mathematically expressed as:

x̃n,i (t) = Fi (x̂n,i (t)) = Di (Ei (x̂n,i (t))), (10)

in which

zn,i (t) = Ei (x̂n,i (t)), (11)
x̃n,i (t) = Di (zn,i (t)). (12)

This paper proposes a methodology to collaboratively train
the EMD and reconstruction for generating discriminative and
informative representations. Fig. 3 illustrates the proposed
unsupervised representation learning framework, consisting of
three main parts. The first part utilizes EMD to remove the
disturbance and noise and preserve the vibration pattern in the
learning data, resulting in the demodulated signals. The second
part uses a CAE model to implement representation learning
from the demodulated signals based on the reconstruction
technique. The final part applies the learned representations
to various data analysis tasks. This step demonstrates the
practical utility of the extracted features for further analysis,
such as anomaly detection.

IV. PROPOSED METHODOLOGY

Fig. 4 illustrates the workflow of the collaborative method
proposed in this paper. The method involves, firstly, signal
denoising via EMD described in (9), secondly, identification
of a corresponding autoencoder model defined in (10), (11),
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Fig. 4. Workflow of the proposed methodology.

and (12) that allows mapping input signals onto the latent
representation such that the reconstruction loss is minimized,
and, lastly, an identification of the optimal EMD level of (9) for
anomaly detection of rail infrastructures via binary clustering.

For a given hard threshold, consider a set of vibration data

D =
{

xm(t)
}M

m=1
and a set of normal data N =

{
xn(t)

}N

n=1
.

We define a set of abnormal data N ′ as a subset of D
that remains after removing the data present in N . This set
N ′ contains abnormal data, including data with uncertain
abnormalities, in which it is defined as

N ′ = D −N =
{

x ′k(t) ∈ D
∣∣∣ x ′k(t) /∈ N

}N ′

k=1
.

For a given EMD level i and the corresponding set of
demodulated signals N̂i =

{
x̂n,i (t)

}N
n=1, the reconstruction

technique is considered to train CAE relying on learning
representations from N̂i to capture its common and essential
features. Then, the CAE is trained on N̂i to obtain the latent
representation by minimizing a loss function that measures
the discrepancy between the input data and its reconstruction.
In this work, a loss function is defined as a combination of
mean squared error (MSE), LMSE, and KL divergence, LKL,
as our reconstruction loss, Lrec, and it is expressed as:

Lrec = LMSE + LKL, (13)

where

LMSE =
1
N

N∑
n=1

(
x̂n,i (t)− x̃n,i (t)

)2
, (14)

LKL = −
1
2

∑
j

(
1+ log(σ 2

j )− µ2
j − σ 2

j

)

+
1
2

∑
j

(
log(σ 2

prior)− 1−
σ 2

j

σ 2
prior
+

µ2
j

σ 2
prior

)
, (15)

where N is the number of normal samples, µi and σi are,
respectively, the mean and standard deviation of the distribu-
tion of the latent representation z along the j th dimension,
µprior and σprior are the mean and standard deviation of the
prior distribution, in which its value can be obtained from a
standard Gaussian distribution, i.e., µprior = 0 and σprior = 1.

The trained CAE allows us to obtain an encoder Ei devel-
oped with respect to the EMD level i , which is used to generate
the respective embedded representation zn,i (t). This paper
considers a binary clustering task to identify the optimal EMD
level that provides the discriminative representation between
normal and abnormal conditions of rail infrastructures. The
Gaussian Mixture Models (GMM) are employed to showcase
clustering, chosen for their robustness to initialization com-
pared to k-means [49]. In this paper, the GMM is trained to
provide two clusters using a dataset containing normal and
abnormal samples. By following Fig. 4, a trained encoder
Ei encodes normal and abnormal samples into the respective
representations. Then, class labels are predicted and compared
with those from the specified hard threshold to assess cluster-
ing performance. The training process is repeated according to
the total number of IMFs. Based on the clustering performance
achieved for all the EMD levels, we identify the optimal level
as the one that yields the highest clustering performance.
Algorithm 1 presents a pseudo-algorithm detailing the steps
involved in the proposed collaborative optimization.

The effectiveness of the proposed methodology is evaluated
based on its performance in representation learning and clus-
tering. The performance of representation learning is measured
via a signal reconstruction and a generation of discriminative
features to distinguish between normal and abnormal condi-
tions. The former aspect is quantitatively assessed through
the reconstruction loss, Lrec, defined in (13). To assess
the effectiveness of the method in generating discriminative
features, we measure the dissimilarity between normal and
abnormal samples obtained from clustering analysis, in which
an average dissimilarity (AD) is exploited for this purpose.
It is calculated from the average distance across all pairs of
normal and abnormal samples. In this paper, an Euclidean dis-
tance metric is considered. A greater dissimilarity indicates a
greater distinction between the normal and abnormal samples.
The average dissimilarity based on the Euclidean distance is
expressed as:

ADi (zn,i (t), z′k,i (t))

=
1

N · N ′

N∑
n=1

N ′∑
k=1

√√√√√ β ′∑
j=1

(zn,i (t j )− z′k,i (t j ))2, (16)

where zn,i (t j ) and z′k,i (t j ) denote the j th dimension of the
latent representation at the EMD level i of the nth normal
and kth abnormal sample. The total number of normal and
abnormal samples are denoted by N and N ′, respectively, and
β ′ is the number of dimensions of the latent representation.
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Algorithm 1 Collaborative Optimization Procedure
1: Input: Normal set (x(t) ∈ N ) and its labels (Y ) obtained

from a hard threshold, abnormal set (x ′(t) ∈ N ′) and its
labels (Y ′) obtained from a hard threshold, the maximum
number of IMFs (I )

2: Output: Optimal level of EMD (iopt), clustering perfor-
mance, dissimilarity between N and N ′

3: Initialize EMD level i ← 1
4: repeat
5: // Step 1: EMD on x(t) ∈ N
6: x̂i (t)← Hi (x(t)) %IMF at level i
7: Initialize number of epoch e← 1
8: repeat
9: // Step 2: CAE Training on x̂i (t) ∈ N̂i

10: Train CAE using cross-validation on x̂i (t)
11: x̃i (t)← Di (Ei (x̂i (t))) % Reconstruction at level i
12: Compute reconstruction loss Lrec(x̂i (t), x̃i (t))
13: e← e + 1
14: until e ≥ Maximum epoch
15: // Step 3: Obtain Latent Representations
16: Ei ← Trained encoder at level i
17: x̂ ′i (t)← Hi (x ′(t)) %EMD on x ′(t) ∈ N ′
18: Latent representations for normal samples: zi (t) ←

Ei (x̂i (t))
19: Latent representations for abnormal samples: z′i (t) ←

Ei (x̂ ′i (t))
20: // Step 4: Binary Clustering Analysis
21: Perform binary clustering on zi (t) and z′i (t)
22: Obtain predicted class labels Ŷi and Ŷ ′i
23: Compute clustering performance at EMD level i
24: // Step 5: Compute Average Dissimilarity
25: Compute average dissimilarity ADi (zi (t), z′i (t))
26: i ← i + 1
27: until i > I
28: // Step 6: Determine Optimal EMD Level
29: iopt ← arg maxi

(
clustering performance at EMD level i,
average dissimilarity at EMD level i

)
30: return Optimal level of EMD iopt, clustering performance,

average dissimilarity

Compared against labels obtained from the hard threshold,
the clustering performance is assessed in terms of precision,
recall, and F1 score, which are expressed as:

Precision =
T P

T P + F P
, (17)

Recall =
T P

T P + F N
, (18)

F1-score =
2× Precision× Recall

Precision+ Recall
, (19)

where, in the context of anomaly detection, true positives
(TP) are the number of correctly classified abnormalities, false
positives (FP) are the number of normal samples classified as
abnormalities, and False Negatives (FN) are the number of
abnormalities classified as normal.

Fig. 5. Train-borne sensing technology. (a) Illustration; Implementation of
(b) ABA measurement in Sweden and (c) train-borne LDV on the TU Delft
CTO measurement train in the Netherlands.

V. CASE STUDIES

To demonstrate the proposed methodology, we present two
case studies from field measurements conducted on opera-
tional rail lines in Sweden and the Netherlands. In the two
case studies, different track components are monitored using
different sensing technologies applied on different operational
conditions.

A. Case 1: Monitoring Rail Surfaces With ABA

ABA is a measurement technology that utilizes accelerom-
eters attached to the axle boxes of moving trains to measure
dynamic responses due to wheel-rail contact. Rail component
conditions and defects can be assessed by examining devia-
tions in their responses. ABA has been successfully tested in
various countries to assess the conditions of various railway
components, e.g., fasteners, rails, insulated joints, transition
zones, and crossings [14], [22], [24], [50]. This paper uses
ABA technology to monitor rail surfaces and applies the
proposed unsupervised representation learning for anomaly
detection, where the method learns the normal behavior from
the ABA data and helps detect abnormalities for further
inspection.

Fig. 5 illustrates a setup of the ABA measurement system.
The ABA data used in this paper are collected from the Iron
Ore line between Luleå, Sweden, and Narvik, Norway. It is a
single-track line with passenger-freight mixed traffic and heavy
axle load (up to 31 t). This paper acquires information from
accelerometers installed in the longitudinal direction as signals
obtained from the longitudinal direction have proven effective
in capturing early-stage characteristics of defects [22]. Addi-
tionally, the information is collected from both the left and
right wheels of all axles. The obtained measurements contain
various rail dynamics, including healthy rails, welds, insulated
joints, switches, and rail surface defects. This paper assumes
that the locations of insulated joints and switches are known.
Hence, the signals at these locations are excluded from the
analysis.

As we primarily focus on rail surface defects, the sensitivity
analysis for segmentation is conducted to ensure the signals
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Fig. 6. Targeted railway track sections on the Rotterdam-Gouda line in
the Netherlands (Map: from ProRail).

capture their dynamic responses. In this work, the ABA
signals are aggregated into smaller segments, each containing
2000 datapoints, resulting in a total of 583 rail segments. With
a hard threshold set to 60 m/s2, we identify rail segments
with ABA responses lower than the specified threshold for
representation learning. These segments are assigned into
a class of samples representing normal conditions, referred
to as Class 0, containing 362 samples. Using information
from fieldwork, we identify the defective samples containing
rails with visible defects. These comprise 85 defective rail
segments, referred to as Class 1. This leaves 136 ABA samples
whose classification is ambiguous under the hard threshold,
and they are grouped into Class U. A summary of the ABA
dataset is presented in Table II.

B. Case 2: Monitoring Rail Fasteners With Train-Borne LDV

While ABA monitors rails indirectly through train vibra-
tions, in contrast, train-borne LDV is an innovative technology
that offers the ability to measure track vibrations from a
moving train directly by emitting a laser beam downward onto
the track [17], [18], [19]. As illustrated in Fig. 5(a), an LDV is
mounted on a train emitting a laser beam downward onto the
track. As the train moves, the laser spot scans the track surface
and measures its vibration velocity contactlessly. Different
track components can be targeted, such as rails [18], [19] and
sleepers [17]. In this case study, LDV is exploited to target
rail fasteners, which are critical components in railway tracks
to provide connection, constraint, and vibration reduction
between rails and sleepers or track slabs.

The open-path scanning of a train-borne LDV may provide
invalid measurements on some fasteners due to the lateral shift
of the laser spot out of the fastener surface (see Fig. 6) or
due to poor surface quality. An example of such an invalid
measurement is shown in the second example of Fig. 2. Con-
sidering the large number of rail fasteners in a rail network,
it is impractical to manually check the signal segment of
each fastener and label it as valid or invalid. Meanwhile, the
diversity of fastener vibrations and the presence of speckle
noise induce significant fuzziness in distinguishing between
valid and invalid signal segments, especially for those with
small vibration amplitude, such as the third example in Fig. 2.
Therefore, the developed unsupervised learning method is
applied in this case study to extract useful features that
characterize the rail fastener vibrations autonomously.

The LDV data considered in this case study are obtained
from the rail fasteners of the same type on the slab tracks of
seven bridges in the Rotterdam-Gouda line in the Netherlands,
as shown in Fig. 6. On each bridge, the train-borne LDV
scans these rail fasteners in a row and measures their vertical
vibration individually. In total, 610 rail fasteners are scanned at
the train speed of 45-75 km/h. The sampling frequency of the
LDV is 102.4 kHz. Then, the LDV signal is cut into segments
according to (5)-(7), in which tbr and ter are the starting and
ending time of the laser spot scanning each fastener (recorded
by the camera). As a result, 610 segments with 2048 datapoints
per segment are obtained.

The mean of the FFT spectrum within the frequency range
between 200 and 800 Hz is considered for class assignment.
For LDV, two hard thresholds are used. We identify LDV data
at rail fasteners as valid if the mean exceeds one threshold.
These result in 211 samples that are assigned to Class 0.
The other 258 samples are identified as invalid measurements,
referred to as Class 1 if the mean is below the other threshold.
The remaining 141 LDV samples are labeled to Class U due
to uncertainties and fuzziness, as their mean is between the
two thresholds. A summary of the LDV dataset is presented
in Table II.

VI. RESULTS

A. Implementation Details

Following the procedure depicted in Fig. 4, the vibration
signals are first decomposed into IMFs by the EMD algorithm.
In this paper, various EMD levels up to a maximum of five are
explored. After decomposing the signal into different IMFs,
the demodulated signal at each decomposition level is obtained
by (9). The CAE structure considered in this paper is symmet-
ric, meaning that the same number of convolutional layers is
designed for the encoder and decoder. We experiment with the
number of convolutional layers used within the structures in
which up to four layers are considered. Four different numbers
of filters are used in the trial: 64, 32, 16, and 8. We also
experiment with different filter sizes: 3 × 3, 5 × 5, 7 × 7,
9× 9, and 11× 11. Each convolutional layer in the encoder is
followed by an activation layer in which the rectifier or ReLU
activation function is used in the convolutional layers. A max-
pooling layer with stride two is defined for downsampling
at the end of the layer. Similarly, the upsampling steps use
transposed convolutions with the ReLU function. At each
upsampling step, the number of filters is doubled.

The demodulated signals from Class 0 are divided into
training and test sets with a ratio of 75:25. Then, we employ
signals from the training set to train the CAE while the test
set is held out to validate the generalization of the proposed
methodology. Five-fold cross-validation is performed in which
90% of the training set is used to train the models, and
the other 10% is used for validating the trained model. The
Adam with Nesterov momentum optimizer is exploited for the
training, and the maximum number of epochs considered is
100. The early stopping is also applied when Lrec has stopped
improving for more than five epochs.

To account for fuzziness and disturbance presented in data,
all samples are included in binary clustering analysis, with
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TABLE II
SUMMARY OF THE DATASETS FROM THE TWO CASE STUDIES

the trained CAE generating representations serving as input
to the GMM. The GMM is executed multiple times with
varying initializations, and the optimal result is selected based
on within-cluster variance. Cluster separability is visualized
to evaluate clustering results, including samples from Class U
that exhibit more uncertainties and fuzziness. The report
of clustering performance is based on the consideration of
Class 0 and Class 1.

B. Results of Different EMD Levels

This section investigates the impact of different EMD levels
on the proposed method for representation learning, measured
by reconstruction loss and average dissimilarity, and clustering
performance, measured by F1-score. We showcase using LDV
data as they contain more severe and complex noise compo-
nents (speckle noise) than ABA data. In this analysis, the CAE
architecture remains consistent as it learns representations
from the demodulated signals at various EMD levels.

Fig. 7 shows the demodulated signals corresponding to
various EMD levels obtained from rail fasteners with valid
and invalid measurements. Specifically, analysis is conducted
on demodulated signals for EMD levels up to 5. As the level
of EMD increases, the demodulated signals become smoother,
and the prominence of noise and high-frequency components
is reduced. This enhances the signal reconstruction capability
of the CAE, resulting in representations that can be used
for a more accurate reconstruction for Class 0, as evidenced
by the decreasing trend of the blue line in Fig. 8(a). This
improvement is further shown by the consistency observed
between the input signal and its corresponding reconstruction,
as illustrated in Fig. 7(a). In contrast, Fig. 7(b) exhibits that
a sample from Class 1 is not as effectively reconstructed
compared to the sample from Class 0 at the respective EMD
level.

Despite the enhancement in signal reconstruction at higher
EMD levels, the disparity between the representations of nor-
mal and abnormal samples does not proportionally improve.
This becomes apparent when evaluating the learned repre-
sentations at each EMD level through clustering analysis,
as shown in Fig. 8(b). It is suggested that the demodulated
signal at EMD level 2 demonstrates optimal clustering effi-
cacy as its embedded features are effective at distinguishing
between normal and abnormal samples, evident by a high
value of F1-score for both Class 0 and 1. The high value
of F1-score is critical in real-world scenarios as this ensures
reliable identification of abnormalities while minimizing the
operational burden of false positives. Additionally, the average
dissimilarity at EMD level 2 is promising, ranking second
among all five levels, as depicted by the red line in Fig. 8(a).
This observation underscores a tradeoff. While increasing the

Fig. 7. Examples of LDV signals from two different rail fasteners and their
respective demodulated signal at different EMD levels.

Fig. 8. (a) Effect of the EMD levels on the proposed method for the
reconstruction loss and the ability to generate the discriminative features.
(b) Effect of the EMD levels on the clustering results measured via F1-score.

level of EMD offers signal denoising, it simplifies vibration
patterns, thus affecting the capability of CAE to discriminate
between normal and abnormal samples. Achieving an opti-
mal balance between denoising and representation learning
capability is thus crucial for accurate anomaly detection. This
demonstrates the ability of the proposed method to generate
features that improve clustering accuracy under challenging
conditions, such as severe speckle noise in LDV data.

In the subsequent sequels, we present the proposed method-
ology for monitoring rail surfaces with ABA and monitoring
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Fig. 9. Reconstruction loss and average dissimilarity between Class 0 and
Class 1 obtained from different methods.

rail fasteners with train-borne LDV. For each case study,
we provide a comparative analysis for representation learn-
ing considering four variants of autoencoder-based models:
autoencoder (AE), long short-term memory (LSTM)-AE,
gated recurrent unit (GRU)-AE, and CAE, in which suitable
experimental configurations are adopted for their development.
We also compare with the denoising sparse wavelet network
(DeSpaWN) [34], in which the parameter setting and loss are
followed from [34]. To be consistent with the development
of our model, four maximum encoder and decoder layers are
considered for all comparative models.

C. Results of Rail Surface Defect Detection Using ABA

This section presents results from the representation learn-
ing considering the ABA data. It can be seen from Fig. 9(a)
that different methods perform differently in signal reconstruc-
tion and differentiation of embedded representations between
clusters. The GRU-AE method yields the lowest reconstruc-
tion loss. It also achieves the highest average dissimilarity,
indicating that it generates embedded representations that
discriminate between normal and abnormal samples better than
the other methods. Our method provides the second-lowest
reconstruction loss and average dissimilarity, reflecting its
competitive capability for representation learning.

Fig. 10 presents clustering results obtained from using
latent features extracted by different methods to train the
GMM algorithm to provide two different clusters, consider-
ing all 583 ABA samples. The t-SNE [29], [30] using the
perplexity of 200 is employed for a visualization of the 2D
representations. Note that perplexity is related to the number of
nearest neighbors each point considers in the t-SNE algorithm
during the dimensionality reduction process. Lower values of
perplexity make the algorithm focus on a very local structure,
while higher values take into account a broader neighborhood.
It is noticeable that the GRU-AE and our method provide
better separability between two clusters with fewer overlaps
than the others, reflecting their high average dissimilarity
obtained. In contrast, the LSTM-AE exhibits more noticeable
overlap, corresponding to its highest reconstruction loss and
low average dissimilarity. The improved cluster separability
provided by our method can assist infrastructure managers by
pinpointing defect locations, enabling timely maintenance and
reducing reliance on manual inspections.

Next, the clustering results are evaluated using labeled data
from Class 0 and Class 1 to investigate the informativeness

Fig. 10. Clustering results using latent features extracted from different
models. The t-SNE with a perplexity of 200 is employed for visualizing
clusters of two colors, from which red represents a cluster of Class 0 and
blue represents a cluster of Class 1.

of the learned representations obtained from each method.
Table III presents a comparative study on the clustering tasks
using different sets of latent features obtained from different
methods. The results show that our method using the demodu-
lated signals at EMD level 2 provides very competitive results.
It correctly assigns 96% of Class 0 and correctly assigns 41%
of Class 1. While the DeSpaWN exhibits cluster separability
with more overlap than our method, it demonstrates the highest
accuracy in correctly identifying samples of Class 1, yielding
a 38% higher accuracy for this class. However, the DeSpaWN
detects Class 0 with 63% lower accuracy compared to our
method. Additionally, the GRU-AE method demonstrates the
lowest reconstruction loss and exhibits good cluster sepa-
rability owing to the high average dissimilarity obtained.
Nevertheless, our method outperforms GRU-AE in terms of
cluster performance. Furthermore, GRU-AE shows a lower
precision for Class 1, indicating a higher misclassification rate
where samples from Class 0 are incorrectly labeled as Class 1.
In contrast, the higher F1-scores achieved by our proposed
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Fig. 11. Examples of validated rail segments at (a) a weld, (b) a small defect,
(c) a squat, and (d) a rail without visible defects.

method for both Class 0 and Class 1 highlight its ability to
accurately classify rail segments under normal and abnormal
conditions, even in the presence of ambiguous ABA responses,
as shown in Fig. 11. The superior clustering performance of
the proposed method underscores its efficacy in generating
discriminative and informative representations of normal and
abnormal rail surface conditions using ABA, attributed to the
utilization of EMD.

It is noteworthy that the parameter configuration for the
DeSpaWN can be further optimized to align with the char-
acteristics of the problem, potentially resulting in improved
performance. Furthermore, as the GRU-AE has a complex
network (8 hidden layers are exploited), the model might
have overfitted on the normal samples during training. Using
a larger dataset can be considered to train the GRU-AE,
potentially resulting in improved performance.

Next, we examine the effectiveness of our proposed method
in handling uncertainties and fuzziness. Figs. 11(a) and 11(b)
show two examples from Class U whose ABA responses dis-
play ambiguous abnormalities. Consequently, both examples
are labeled as Class 1 by the hard threshold for clustering.
According to the hard threshold labels, the method correctly
identifies Fig. 11(a) to Class 1 and misidentifies Fig. 11(b)
to Class 0. Validation against fieldwork information reveals
that Fig. 11(a) represents a rail segment at a weld, while
Fig. 11(b) is a rail segment at a small defect. However,
it can be seen that the ABA signal at the weld in Fig. 11(a)
shares similar characteristics with the ABA signal at squat in
Fig. 11(c). This suggests that the weld at this rail segment is in
poor condition. The weld affects rail vibration, which ABAs
capture. Further experiments can be conducted to confirm the
condition. Similarly, the ABA signal of the rail with a small
defect in Fig. 11(b) resembles that of the normal rails shown in

Fig. 12. Clustering results using latent features extracted from different
models. The t-SNE with a perplexity of 30 is employed for visualizing
clusters of two colors, from which red represents a cluster of Class 0 and
blue represents a cluster of Class 1.

Fig. 11(d). These findings demonstrate that the latent features
obtained from our method are informative for grouping rail
dynamic responses with similar characteristics.

D. Results of Monitoring Rail Fasteners With LDV

This section presents results from the representation learn-
ing considering the LDV data. Similar to ABA, Fig. 9(a) shows
that different methods perform differently in signal recon-
struction and generation of embedded features. The GRU-AE
method yields the lowest reconstruction loss and generates the
embedded representations that provide a good average dissim-
ilarity between normal and abnormal samples. Our method
provides the second-lowest reconstruction loss, reflecting its
competitive capability for representation learning. Meanwhile,
it has higher dissimilarity than the GRU-AE, reflecting its
capability for clustering using the learned features. Similar
to the ABA case study, this highlights the use of EMD in the
proposed method.

Fig. 12 presents clustering results obtained from using latent
features extracted by different methods. The t-SNE using the
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TABLE III
COMPARISON RESULTS OF CLUSTERING PERFORMANCE FOR ABA DATA

TABLE IV
COMPARISON RESULTS OF CLUSTERING PERFORMANCE FOR LDV DATA

Fig. 13. Examples of LDV measurements that are identified as valid
measurements by our methodology but identified as invalid by the prediction
using the handcrafted features.

perplexity of 30 is employed for a visualization of the 2D
representation of the encoded features obtained from each
method. Despite different reconstruction loss and dissimilarity
obtained, the latent features obtained from all methods provide
a clear separation between a cluster of two colors representing
a cluster of Class 0 and Class 1, with some minor overlaps
seen more from the DeSpaWN than the other methods.

Evaluating against labeled data, Table IV shows that our
proposed methodology using the demodulated signals from
the EMD level 2 demonstrates competitive results for both
Class 0 and Class 1. It correctly assigns 47% of Class 0 and
correctly assigns 90% of Class 1. Although the GRU-AE
method yields the least reconstruction loss and provides
good cluster separability due to high average dissimilarity,
it demonstrates a 43% lower accuracy in correctly identifying
samples of Class 1 compared to our methodology. However,
the GRU-AE achieves 18% higher detection accuracy for
Class 0 than our method. The GRU-AE method also exhibits a
higher rate of incorrectly identifying an LDV signal as invalid

Fig. 14. Examples of LDV measurements that are identified as invalid
measurements by our methodology but identified as valid by the prediction
using the handcrafted features.

when it is valid. Mitigating these false positives is crucial as
false positives impair the learning of actual trends and patterns
in rail fastener health. By reducing false alarms, operators can
identify issues early and proactively address them before they
escalate.

To examine the effectiveness of our proposed method in
handling samples of Class U from LDV data, we compare
the clustering results obtained from the latent features learned
by our method with those obtained from a hand-crafted
method. The hand-crafted method, as outlined in [51], involves
the manual design of three features: the variations in the
time and frequency domains as well as the power spectrum
density entropy of each raw signal segment (without denois-
ing). Various clustering algorithms are implemented, including
k-means, k-medoids, and fuzzy c-means. For each algorithm,
clustering with multiple clusters is used to handle the diverse
patterns observed in the valid measurements and then merge
them into a single group. The optimal number of clusters is



PHUSAKULKAJORN et al.: UNSUPERVISED REPRESENTATION LEARNING FOR MONITORING RAIL INFRASTRUCTURES 13

tuned for each algorithm. More details of the feature design
and clustering analysis can be found in [51].

Out of the 141 samples of Class U, 10 (or 20) samples are
labeled as valid measurements, while 131 (or 121) samples are
labeled as invalid measurements when using the hand-crafted
method in [51] (or the proposed method). The ratio between
the two labels is similar between the two methods despite
their significant differences in the feature design as well as
the clustering algorithm. The two methods consistently label
115 out of 141 samples (81.56%), whereas the remaining is
labeled differently. Figs. 13 and 14 show several samples with
inconsistent clustering results. The LDV samples shown in
Fig. 13 are labeled as invalid using the hand-crafted method
in [51] but as valid using the proposed method. It can be
seen that these samples on top indeed carry vibration patterns
(evident by the demodulated LDV), while the severe speckle
noise makes them less pronounced. Owing to the use of EMD
for denoising, the proposed method captures these vibration
patterns more effectively, thus providing more reasonable
labels compared to the hand-crafted method. The samples
shown in Fig. 14 are labeled as valid by the hand-crafted
method, most likely due to the local and sudden variations
in the signals, which are actually different from the targeted
vibration patterns that are more stationary and continuous.
The proposed method identifies such differences and avoids
such signals being labeled as valid. These typical examples
showcase the effectiveness of the developed representation
learning framework in capturing the targeted vibration pattern
while reducing the disturbance of the noise.

VII. CONCLUSION

Current railway infrastructure management relies on man-
ual inspections and automated methods, both limited by
human error and the scarcity of labeled data, which hinders
effective representation learning. Our methodology addresses
this by employing unsupervised representation learning using
high-frequency data from moving sensors. The methodol-
ogy synchronizes the empirical mode decomposition (EMD)
with a convolutional autoencoder (CAE). By testing with
the ABA measurements from the Swedish rail network and
the LDV measurements from the Dutch rail network, the
proposed methodology demonstrates a promising performance
for unsupervised rail defect and rail fastener analysis. Evalu-
ating the obtained representations using the Gaussian mixture
model clustering, cluster separability with minor overlaps is
achieved for both application cases. This proves the effective-
ness of the method in generating features that differentiate
between normal and abnormal samples, even the inherent
fuzziness and disturbance present in the ABA and LDV data.
As representations are learned in an unsupervised manner,
the methodology reduces the dependency on labeled data.
Verified against labels from a hard threshold, it demonstrates
an improvement in detection accuracy compared to other vari-
ants of autoencoder-based models and the wavelet-based CAE,
achieving a 16% increase with ABA data and a 21% increase
with LDV data. Furthermore, the latent features obtained from
the proposed method have been proven to be informative.
In the case of ABA data, clusters of rail segments with similar

characteristics can be used to guide the inframanager about the
locations of defects. For LDV data, clusters of rail segments
with similar characteristics can be used to learn trends and
patterns in rail fastener health. The success of the proposed
method highlights the importance of EMD for denoising,
enhancing representation learning of rail infrastructure char-
acteristics and reducing noise interference. Consequently, our
methodology enables continuous and autonomous monitoring
over long distances during train operations, which, in turn,
minimizes inspection time, service disruptions, and mainte-
nance costs, while enhancing detection accuracy.

Future research includes improving cluster separability
through advanced clustering techniques and hybrid approaches
to better distinguish between normal and abnormal samples.
Incorporating additional data sources and measurements can
be considered with a development of data fusion techniques to
provide a comprehensive analysis and enhance accuracy and
reliability of rail infrastructure conditions. Examining scala-
bility and real-time processing capabilities can be considered
for enabling real-time analysis of large-scale rail network data.
Validating the methodology across different rail networks with
varying environmental conditions and operational patterns is
also essential to ensure its robustness and applicability.
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